NOTES ON RPAL

1. Introduction

RPFAL is a subset of PAL, the “Pedagogic Algorithmic Languag&hereare three versions ofAR:
RPAL, LPAL, and JAL. Theonly one of interest here is RP. The“R” in RPAL stands for right-ref-
erence, as opposed tdl!” (LPAL) which stands for‘left-reference”. The logic behind this corention
comes from a tradition in programming languages, in which an identifien occurring on the left side of
an assignment, denotes tHeft-value”, i.e. its address, whereas if it occurs on the right side of the assign-
ment, it denotes théright-value’, i.e. the value stored at that address. An RPAL program is simply an
expression. RRL has no concept ofdssignment; nor even one of ‘memory”. Thereare no loops, only
recursion. RRL programs, as we shall see, consistlesiely of two notions: function definition and
function application. LPAL is essentially RRL plus assignments, memory aliasing, and other issues.
JPAL, finally is LPAL plus jump statementsTo repeat, we will only deal with RPAL.

RPAL is a functional languageEvery RPAL program is nothing more than an expression, ‘and *
ning” an RPAL program consists of nothing more thamlaating the &pression, yielding one resulThis
seems superfluous at firsytlthe catch is that in RPAL functions are much more important than in other
languages. Ifact, the single most important construct in RPAL is the functiBrom nav on, we will
simply say PAL instead of . Functionsin PAL are so-calledfirst-class’ objects. Thismeans that
unlike trraditional languages such as Pascal and C, the programmer can do anything he/she wants to with a
function in PAL, including sending a function as a parameter to a function and returning a function from a
function.

We first gve sme examples of PAL programs:
1) letX=3
in
Print(X,X**2)

2) letAbs(N) =
(NIs0—>-N|N)
in
Print(Abs(-3))

The values printed by each of these programs are (3,9) and (3), nebpedine actual alue of each pro-
gram is dummy.

PAL has operators (a.k.a. functors), function definitions, constant definitions, conditional expressions, func-
tion application, and recursion. The firstaenple abwe ilustrates a constant definition of X as 3, and
function application: the function Print is applied to the pair (X,X**2). The definition of X as 3 holds in
the expression Print(X,X**2); thus the result (3,9)he second example illustrates function definitions and
conditional expressions: Abs is defined as a function, thas takparameter N and returns either -N or N,
depending on whether N is less than zero.

PAL is a dynamically typed language. This means that wnfikongly typed languages such eassPal or
C, they type of a variable is determined at run-time, and not earker example, consider the definition

PLP Notes RPAL

(not a complete PAL program)
let Funry = (B —> 1 | "January’)

In this definition Funnis defined as the integer 1 or the string 'January’, depending on the current value of
B.

PAL has six major types of values: igts; truthvalue (boolean), string, tuples, functions, and
dummy Since the language is dynamically typed, there averakfunctions gailable to find out what
type of object is being dealt withThese are: Isinger, Istruthwalue, Isstring, Istuple, Isfunction, and
Isdummy All of these are functions that &lan abitrary object, and return either true aitse, depending
on the type of that object.

Other features of the language:

Truthvalue operations p&, not, eq, ne
Integer operations +,-,*1,** eq,ne,ls,gr,le,ge
String operations eqg, ne, Stem S, Stern S, Conc ST

2. Definitions.
Definitions in PAL are of the form “let <defn> in <exph>For example:

let Name = 'Dolly’ in Print ("Hello’,Name)

Definitions can be nested arbitrariily which case the issue of scope appe&is.example:

let X=3

in

let Sgr X = X**2
in

Print (X, Sgr X, X * Sqr X, Sqr X ** 2)
The scope of X (the value 3) is the entixpression following the firstih’’. The scope of the Sqr function
is only the expression following the second “in”.

Another form of definition is théwhere” definition, which is similar to thelét’” definition, except
that the order is kersed. Br example, the alve FAL program might be re-written as:
(Print (X, Sgr X, X * Sgr X, Sqr X ** 2)
where
Sgr X = X**2)
where
X=3

Simultaneous definitions are also allowed, using #yvérd “and”. For example:
let X=3 and Y=5 in Print(X+Y)

Note that because of this use of tleaord “and”, the boolean (truthvalue) conjunction operator of the
same name is represented using the symbol “&”.

PLP Notes RPAL

Finally, definitions can hold within one anothesing the ‘within’’ clause. Normallythe scope of dlét”
or “where’ definition is an gpression. Thescope of a‘within’’ definition is another definition, not an
expression. Br example:

let c=3 within f x = x + ¢ in Print(f 3)

3. Functions

In PAL, functions are first-class object¥his means that there no silly restrictions on the circum-
stances in which one can use a function, as there are otiaar languages. In PAL, functions can be
given a rame using an ordinary definition, passed as parameters to other functions, returned from functions,
selected from other objects in conditional expressions, and entered into data structures. Of course, func-
tions can also be applied to actualues. Functionsan be used arbitrarily in expressions, anywhere, say
an integer could be usedEvery function has a so-called boundriable (its parameter) and a body (an
expression). Br example:

fnX. XIs0—>-X| X
A function can be gén a rame using an ordinary definition:
let Abs = fn X. X Is 0> -X | X in Print (Abs(3))
A function can be passed as parameter:
letfg=g3inlethx=x+1in Print(f h)
A function can be returned from a function:
let f x = fn y.x+y in Print (f 3 2)
A function can be selected from other objects using the conditional:
let B=true in let f = (B-> (fn y.y+1) | (fn y.y+2)) in Print (f 3)
A function can be entered into a tuple (more on tuples later):
let T=((fn x.x+1),(fn x.x+2)) in Print (T 13, T 2 3)
N-ary functions are allowed, by using tuples:
let Add (x,y) = x+y in Print (Add (3,4))

In general, a function (fn x.B) is applied to agwnent A by juxtaposition, i.e. by forming thepeession
(fn x.B)A. There are tw ways in which function application can be performed:RL" (programming
language) ordeend in “normal’ order.

1) InPL orderthe argument A iswaluated first, and then the body of the function (expression B)
is evaluated, with x replaced by the value of A.

2) Innormal orderA is not evaluated first bt instead is used to replace x in B LITERALL
Then B is galuated.

These tw are quite different, as we shall see lator naw, the following example should suffice:
letfxy=xinPrint(f3(1/0))

In normal orderf is gpplied to 3 (with no attempt tovduate the 3). The result is a function (f8)y
(1/0), since the 3 replaced the Mext, the (1/0) literally replaces all thesythat occur in the expression 3,
i.e. none. The resultis 3. In PL ord#ére (1/0) is ealuated first, which produces an error.

PLP Notes RPAL

4. Recursion.

Recursion is the only way to actéerepetition in RL. Functionsare not recurse by default in
PAL; one must indicate that a function is recuesby using the leyword “rec”. The classical &ctorial
example:

let rec Fact N =
Negl->1
| N * Fact (N-1)

in

Print (Fact(3))
Ordinarily (i.e. without the‘fec” keyword) the scope of the definition dFact” would be limited to the
expression on the last linaVith the lkeyword “rec”, however, the scope of' Fact” is extended to include
the body of Fact itself, i.e. the expression N eg 1L | N* Fact (N-1). Here are tavexamples of recursion
in PAL:

let rec length S =
Seq’'—>0
| 1 +length (Stern S)
in Print (length(’'1,2,3"), length ("), length('abc’))

let Is_perfect_Square N = Has_sqrt_ge (N,1)

where
rec Has_sqrt_ge (N,R) = R**2 gr N
—> false
| R*2eqN
—> true

| Has_sqrt_ge (N,R+1)

in Print (Is_perfect_Square 4,
Is_perfect_Square 64,
Is_perfect_Square 3)

It would be instructie o smulate by hand thexecution of each of these programs, and to actually run
them on the computer.

5. Tuples

The only data structurevalable in PAL is the tupleTuples can be of gnlength (including zero for
the “nil”’ tuple), and thg can contain elements of atype, including other tupleg-or example:

let Bdate = ("June’, 21, '19XX’)
in let Me = ('Bermudez’, 'Manuel’, Bdate, 50)
in Print (Me)

Tuples can be used forapurpose, since tlyeprovide more flexibility than another data structureAn
array is a special case of a tuple, in which all the components are of the sanfeotyg@ample:

PLP Notes RPAL

let =2 in let A = (1,1,1**2,1**3,1**4,1**5) in Print (A)
A two-dimensional array can be had by constructing a tuple of tuples:
let A=(1,2) and B=(3,4) and C=(5,6) in let T=(A,B,C) in Print(T)
Even a triangular array can be had:
let A = nil aug 1 and B=(2,3) and C=(4,5,6) in let T=(A,B,C) in Print(T)

To slect an element from a tuple, ofepplies’ the tuple to an ingger, as if the tuple were a functior-or
example:

let T=(Ca’,/b’,true,3) in Print(T 3, T 2)

Tuples can also be extended, i.e. an element (pftype) can be added to the end of an existing tuple,
using the “aug’(augment) operationi-or example:

let T=(2,3)inlet A=T aug 4 in Print (A)
Summarizing, here are the tuple operations:

E, E,...,E, tuple construction (tau)

Taug E tuple extension (augmentation)
Order T number of elements of a tuple
Null T true if T is nil, false otherwise

6. Operator Precedence in PAL

Pd is a language rich in operators. Hereytlaee, from least to most binding, i.e from lowest to high-
est precedence.

let fn

where

tau

aug

d

or

&

not
grgelelseqne
+ -

*/

*%

@ <IDENTIFIER>
function application

Only the ‘@' operator remains. This is thénfix’ ' operator which allows infix use of a function.
For example:

let Add xy = x + y in Print (3 @Add 4)

PLP Notes RPAL

7. Examples

Here are tw sample PAL programs.

Example 1:
let Sum_list L =
Patial_sum (L, Order L)
where rec Partial_sum (L,N) =
Neq0—>0
| L N + Partial_sum(L,N-1)
in Print (Sum_list (2,3,4,5))
Example 2:

let Vector_sum(A,B) =
Patial_sum (A,B,Order A)
where rec Partial_sum (A,B,N) =
N eq 0—> nil
| (Partial_sum(A,B,N-1) aug (AN + B N))
in Print (Vector_sum ((1,2,3), (4,5,6)))

There are manerror conditions that can occur in this last program. Here is a (non)-exfealstti

Error Locationof error
Ais not a tuple Evaluation of Order A
B is not a tuple Indexing of B N
A shorter than B Last part of B is ignored
B shorter than A Indexing B N
Components not intgers Addition

A and B components not of same type Addition

Here an example of loto implement one data verification:

let Vector_sum(A,B) =
not (Istuple A)y->'Error’
| Partial_sum (A,B,Order A) where ...

Once again, it would be instrueti to hand-simulate thexecution of each of these, and to run them on the
computer as well.

PLP Notes RPAL

